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Fig.1 MMRS on Zoe rover in Atacama (TRL5)

Supported by PIDDP. MIDP, ASTEP, and recently
by MatISSE program, we have accomplished the de-
sign, building, and testing two high performance in situ
Raman spectrometers: the Mars Microbeam Raman
Spectrometer (MMRS) and the Compact Integrated
Raman Spectrometer (CIRS).

MMRS (Fig. 1) has a separate Raman probe con-
nected through optical fiber to Raman spectrometer [1-
3]. MMRS was tested during three field seasons (2012-
2015) in Atacama Desert, twice on Zoe rover (> 50 km
traverse each time) and once stand-alone. These field
studies demonstrated a solid science performance and
robust engineering of MMRS (TRL 5). A new paper
was published in 2015[4].

CIRS (Fig. 2) was developed on the basis of ma-
ture MMRS technology but having an all-optics-in-one
architecture (i.e., without optical fiber). The develop-
ment of CIRS was supported by MatISSE program,
with a goal to reach TRL 6 [5, 6]. Currently, a proto-
type of CIRS was built and tested. We will report here
the results from a set of performance tests accom-
plished in August 2016.

MISSIONS: Both MMRS & CIRS are suitable for
definitive molecular identification during landed plane-
tary missions. The detailed requirements of a specific
mission will determine the selection among the two.

A few common features of MMRS & CIRS are:

(1) both have wide spectral range and necessary
spectral resolution to achieve the goal of comprehen-
sive molecular ID;

(2) both are_highly sensitive, capable of obtaining a
spectrum from a solid sample within <1s to 1min;

(3). both allow the laser excitation and Raman pho-
ton collection through an optically transparent window

Fig. 2. CIRS prototype (to TRL6)

(fused silica or sapphire),
thus supporting simple
deployments on a Venus
lander or on an ISRU
platform of a lunar mis-
sion, in addition to the
direct arm-deployment by
a rover on Mars.

CIRS performance

The Raman spectral
range of CIRS is 4432 -
183 cm™, with a spectral
resolution ~ 9 cm™,

CIRS has a context imager, illuminated by a set of
UV LED (275 nm) and blue LED (467 nm). It has a
Field of View (FOV) ~ 37x26 mm and a chip format of
1600x1200 pixels. The laser spot and the context im-
age of the sample are seen in the same image.

A recent test revealed that CIRS laser beam diame-
ter at focus is 35.7 um. It has a slow-growing beam
profile, that only double its diameter at + 4.5 mm from
the focus, Fig. 3. With this beam profile, the measured
Raman sampling depth (i.e., the off-focus Raman
measurement with recognizable peaks) is > 9.375 mm
from a quartz at 8s integration, and ~ 3.125 mm from a
dark pyroxene at 64s integration (Fig. 4).

Figure 3. CIRS laser beam profile near focus
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The small diameter of laser beam is designed to
detect minor and trace species in a geological sample
(rock or soil). The slow-growing beam profile is de-
signed to tolerant the surface roughness of an unpre-
pared geological sample during a robotic exploration.

The optical throughput of CIRS is about 90% in
excitation path and about 20% in collection path. It
enables the mineral spectrum with good S/N to be ob-
tained in less than 1s for strong Raman scatterers, or
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maximum near 1 min for weak Raman scatterers,
Figure 5. Reduced carbon in chert with
TOC@8x10™ was detected by CIRS from a 4s inte-
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Figure 4. Test of Raman Sampling

depth

Figure 5. Raw CIRS spectra of strong

(raw spectra) and weak Raman scatterers

gration.

Through a study of nearly 30 extraterrestrial
samples (lunar, martian, and other meteorites) using
fluorescence microscopy and Raman spectroscopy
[7, 8] we have demonstrated that fluorescence emis-
sion from these materials are low-to-non-existence.
Thus, fluorescence is not a threat to planetary Ra-
man spectroscopy using CW 532 nm excitation. For
its occasional occurrence, our solution is to conduct
SERDS (Shifted Excitation Raman Differentiate
Spectroscopy) without changing any hardware in
CIRS [8].

The realization of SERDS in CIRS is by adjust-
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ing the excitation wavelength of its CW laser
source. We have found a 15 cm™ shift can be pro-
duced by 12°C temperature adjustment of the fre-
quency-doubling crystal of the CIRS laser unit, as
shown in Fig 6. This shift is enough to distinguish Ra-
man peak from fluorescence signals, Fig. 7.

Comparison with other Raman architectures:
Comparing with a_remote-Raman architecture, an in
situ Raman has:

(1) A capability of detect minor and trace species,
due to the small sampling spot (20-30 pum vs. 500-
1000 pm);

(2) A much higher (102 to 10* times) Raman signal
collectivity, using a f/2 optics vs. /20 to f/100 optics;

(3) A lower risk of sample damage (cw laser vs.
pulse laser).

Comparing with a pulse UV- Raman architecture, the
CW green Raman has:

(1) > two orders of magnitude stronger Raman
signal on minerals [5], and on reduced carbon and bi-
omarkers [9, 10];

(2). A lower risk for sample damage.

In the aspect of engineering, MMRS & CIRS use
ordinary CCD, optics and filters for visible light, and a
mature compact CW 532nm laser. They have higher
TRL (in both component levels and in system level)
than other Raman architectures.
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Figure 6. Laser wavelength shift as f(T)
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